Powers from Products of Consecutive Terms in Arithmetic Progression

نویسندگان

  • M. A. BENNETT
  • N. BRUIN
  • K. GYŐRY
چکیده

A celebrated theorem of Erdős and Selfridge [14] states that the product of consecutive positive integers is never a perfect power. A more recent and equally appealing result is one of Darmon and Merel [11] who proved an old conjecture of Dénes to the effect that there do not exist three consecutive nth powers in arithmetic progression, provided n 3. One common generalization of these problems is to ask whether it is possible to have a product of consecutive terms in arithmetic progression equal to a perfect power. In general, the answer to this question is ‘yes’, as the Diophantine equation

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Powers from five terms in arithmetic progression

has only the solution (n, k, b, y, l) = (48, 3, 6, 140, 2) in positive integers n, k, b, y and l, where k, l ≥ 2, P (b) ≤ k and P (y) > k. Here, P (m) denotes the greatest prime factor of the integer m (where, for completeness, we write P (±1) = 1 and P (0) = ∞). Rather surprisingly, no similar conclusion is available for the frequently studied generalization of this equation to products of con...

متن کامل

Perfect powers in arithmetic progression 1 PERFECT POWERS IN ARITHMETIC PROGRESSION. A NOTE ON THE INHOMOGENEOUS CASE

We show that the abc conjecture implies that the number of terms of any arithmetic progression consisting of almost perfect ”inhomogeneous” powers is bounded, moreover, if the exponents of the powers are all ≥ 4, then the number of such progressions is finite. We derive a similar statement unconditionally, provided that the exponents of the terms in the progression are bounded from above.

متن کامل

Faulhaber's theorem on power sums

We observe that the classical Faulhaber’s theorem on sums of odd powers also holds for an arbitrary arithmetic progression, namely, the odd power sums of any arithmetic progression a+b, a+2b, . . . , a+nb is a polynomial in na+ n(n + 1)b/2. While this assertion can be deduced from the original Fauhalber’s theorem, we give an alternative formula in terms of the Bernoulli polynomials. Moreover, b...

متن کامل

Faulhaber’s Theorem for Arithmetic Progressions

Abstract. We show that the classical Faulhaber’s theorem on sums of odd powers also holds for an arbitrary arithmetic progression, namely, the odd power sums of any arithmetic progression a + b, a + 2b, . . . , a + nb is a polynomial in na+ n(n+ 1)b/2. The coefficients of these polynomials are given in terms of the Bernoulli polynomials. Following Knuth’s approach by using the central factorial...

متن کامل

Diophantine equations with products of consecutive terms in Lucas sequences II

Here, we continue our work from [7] and study an inhomogeneous variant of a Diophantine equation concerning powers in products of consecutive terms of Lucas sequences. AMS Subject Classification: 11L07, 11N37, 11N60

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006